UAF1780-1781-1782 ## DUAL 2 A LOW DROP OUT INTELLIGENT POWER SWITCH ADVANCE DATA - LOW POWER DISSIPATION (LOW V_{SAT}: 0.6 V @ 2 A) - ALL INPUTS ARE OPERATIONAL WITH CONTROL SIGNALS HIGHER THAN V_{CC} - ALL INPUTS WITHSTAND VOLTAGES LOWER THAN GROUND - HIGH OUTPUT CURRENTS - PROTECTION OF OUTPUT TRANSISTORS (UP TO + 32 V) - THE OUTPUTS CAN WITHSTAND VOLTAGES LOWER THAN GROUND - WITHSTAND ON Vcc SPIKES UP TO (60 V, 10 ms) - DIFFERENTIAL INPUTS #### DESCRIPTION The UAF1780-1781-1782 are dual interface circuits delivering high output currents and capable of driving any type of load. An on-chip dc/dc conversion unit in conjuction with a few low-cost external components (a low value inductor and a low voltage capacitor) are implemented to limit the saturation voltage thereby optimizing the efficiency. The devices are particularly well protected against destructive overloads. Each output implements a current limit circuitry, a desaturation monitoring unit for the detection of overloads and short-circuits, and a thermal protection feature. Corresponding output is turned off in case of prolonged desaturation or excessive internal dissipation. This condition is reflected by a low level on ALARM output terminal. This protection unit can be reactivated by applying a logic low signal to RESET input. However, for inductive loads, a delay is imposed on signal applied to this RESET input so as to prevent a rapid and premature conduction of output transistors. A logic high signal applied to STROBE input will disable both power outputs. The devices operates within a supply voltage range of + 8 V to + 32 V. #### **PIN CONNECTIONS** | 1 -Oscillator | 9-V _{CC} | |-----------------------|-------------------| | 2 -V _(aux) | 10-Output | | 3-Input 2 | 11 - Alarm 1 | | 4 -Delay 2 | 12-Delay 1 | | 5-Alarm 2 | 13-Input 1 | | 6 -Reference | 14-Reset | | 7 -Output 2 | 15-Strobe | 1 8-Ground #### **ABSOLUTE MAXIMUM RATINGS** | Symbol | Parameter | Value | Unit | | |---|---------------------------------------|--------------------|------|--| | V _{CC} (*) | Supply Voltage | + 35 | V | | | V _{I1}
V _{I2}
V _{reset}
V _{strobe} | Input Voltages | 30 to + 55 | V | | | I ₀ | Output Current | Internally Limited | Α | | | ΙL | Current In DC/DC Converter Inductance | 0.4 | Α | | | Ptot | Total Power Dissipation | Internally Limited | W | | | Toper | Operating Free-air Temperature Range | - 40 to + 85 | °C | | | Tj | Junction Temperature | + 150 | °C | | ^{+ 60} V (10 mS) #### THERMAL DATA | R _{th(j-c)} | Maximum Junction-case Thermal Resistance | DIP.16 | 25 | °C/W | |----------------------|--|-----------|-----|------| | | | Multiwatt | 2.5 | | | R _{th(j-a)} | Maximum Junction-ambient Thermal | DIP.16 | 70 | °C/W | | | Resistance | Multiwatt | 40 | | #### **BLOCK DIAGRAM** ### **ELECTRICAL CHARACTERISTICS** V_{CC} = + 24 V, -40 °C, \leq T_{amb} \leq + 85 °C (unless otherwise specified) | Symbol | Parameter | Min. | Typ. | Max. | Unit | |------------------------------------|--|--------------------------------|--------------------|--------------------|------| | Vcc | Supply Voltage | 8 | | 32 | V | | Icc | Supply Current Input 1 = Input 2 : Low Input 1 = Input 1 : High, I _O = 2 x 2 A | _ | 7
25 | 32 | mA | | J ₁ | Input Current (all inputs) $ \begin{array}{l} V_1 > V_{ret} \\ V_1 < V_{ref} \end{array} $ | | 15
0 | 50 | | | I _{OHA} | High Level Alarm Output Leakage Current (V _A = + 10 V) | | 0 | 10 | μА | | VOLA | Low Level Alarm Output Voltage (I _A = + 10 mA) | | 1.1 | 1.3 | V | | V _{CC} - V _O | Power Outputs Dropout Voltage $I_O = 0.5 \text{ A}$ $I_O = 1 \text{ A}$ $I_O = 2 \text{ A}$ | | 0.15
0.3
0.6 | 0.25
0.4
0.7 | V | | loL | Power Outputs Leakage Current | | | 100 | μА | | treset | Reset Pulse Duration (C1 = C2 = 1 μF) | | 400 | | mS | | t _d | Delay Time before Desaturation Monitoring Unit Becomes Active (C1 = C2 = 1μ F) $V_{CC} - V_O = + 12 V$ $V_{CC} - V_O = + 24 V$ $V_{CC} - V_O = + 32 V$ | | 20
10
5 | | mS | | V _{ref} | Reference Input Voltage | 1.4 | | 55 | V | | I _{ref} | Reference Input Current (V_{ret} = 1.4 V)
All Inputs < V_{ret}
All Inputs > V_{ret} | - 1 | 80
0 | 150
+ 1 | μА | | 10 | Available Output Current $\begin{array}{ccc} & & & & & & & & & & \\ & & & & & & & & $ | 2.5
1
2.5
2
1
2 | | | А | | V _{CC} - V _O | Maximum Output Voltage Swing | | - | 50 | V | | V _{aux} - V _{CC} | DC/DC Output Voltage 0.5 A < I_0 < 2 A (each output) CO = 47 μ F, L = 100 μ H | | 1.25 | | V | Fig. 3 – AVAILABLE OUTPUT CURRENT VS EXTERNAL RESISTANCE VALUE DIP. 16 PACKAGE. Fig 5 RESPONSE TIME O 0.4 0.8 TIME (µS) Fig 2 - MULTIWATT PACKAGE Fig. 4 - SATURATION VOLTAGE VS Fig. 6 RESPONSE TIME. Figure 7: Typical Application. L_O and C_O are the external elements of the dc/dc converter. Typical values and characteristics of these components are as follows: For L_O : - inductance = 100 μ H (tolerance + 10%) - maximal current ≥ 400 mA For C_0 : The value of this capacitor is not critical, a capacitor of $C1 \ge 47$ F, $Vn \ge 6.3$ V will be suitable for the majority of the applications. The on-chip dc/dc converter can be disabled by connecting $V_{(aux)}$ terminal to V_{CC} and leaving "Oscillator" pin floating. - C₁ and C₂ implement two distinct functions : - response time required by the desaturation monitoring unit to become active. - time delay imposed on each power output prior to conduction. $$t_d = \frac{C \cdot 3.5 \text{ V}}{7 \,\mu\text{A}}$$ With $C_2 = C_3 = 1 \mu F$, the outputs are protected against voltage transients of as high as + 32 V and the response time of the desaturation monitoring unit is 400 ms. - Dz1 and Dz2 Zener Diodes are required in the case of inductive loads. Vz of these diodes should be < 60 V. - R₀ determines the value of maximum output current (DIP package). Its value is given in curve 3, where output current values are plotted against the corresponding values of this resistor.