UAF1780-1781-1782

DUAL 2 A LOW DROP OUT INTELLIGENT POWER SWITCH

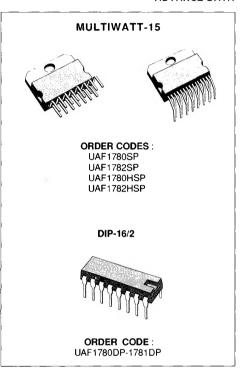
ADVANCE DATA

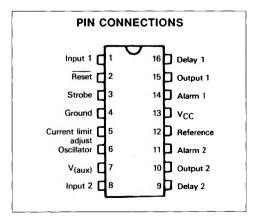
- LOW POWER DISSIPATION (LOW V_{SAT}: 0.6 V @ 2 A)
- ALL INPUTS ARE OPERATIONAL WITH CONTROL SIGNALS HIGHER THAN V_{CC}
- ALL INPUTS WITHSTAND VOLTAGES LOWER THAN GROUND
- HIGH OUTPUT CURRENTS
- PROTECTION OF OUTPUT TRANSISTORS (UP TO + 32 V)
- THE OUTPUTS CAN WITHSTAND VOLTAGES LOWER THAN GROUND
- WITHSTAND ON Vcc SPIKES UP TO (60 V, 10 ms)
- DIFFERENTIAL INPUTS

DESCRIPTION

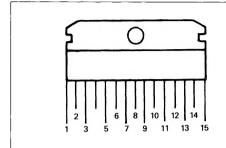
The UAF1780-1781-1782 are dual interface circuits delivering high output currents and capable of driving any type of load.

An on-chip dc/dc conversion unit in conjuction with a few low-cost external components (a low value inductor and a low voltage capacitor) are implemented to limit the saturation voltage thereby optimizing the efficiency.


The devices are particularly well protected against destructive overloads. Each output implements a current limit circuitry, a desaturation monitoring unit for the detection of overloads and short-circuits, and a thermal protection feature.


Corresponding output is turned off in case of prolonged desaturation or excessive internal dissipation. This condition is reflected by a low level on ALARM output terminal. This protection unit can be reactivated by applying a logic low signal to RESET input.

However, for inductive loads, a delay is imposed on signal applied to this RESET input so as to prevent a rapid and premature conduction of output transistors.


A logic high signal applied to STROBE input will disable both power outputs.

The devices operates within a supply voltage range of + 8 V to + 32 V.

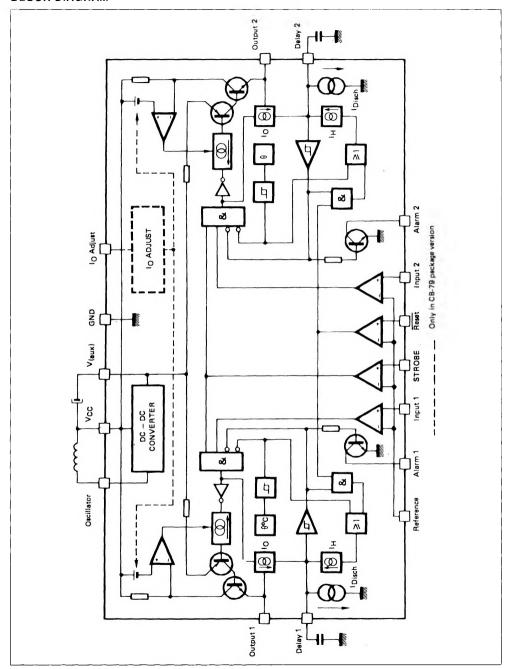
PIN CONNECTIONS

1 -Oscillator	9-V _{CC}
2 -V _(aux)	10-Output
3-Input 2	11 - Alarm 1
4 -Delay 2	12-Delay 1
5-Alarm 2	13-Input 1
6 -Reference	14-Reset
7 -Output 2	15-Strobe

1

8-Ground

ABSOLUTE MAXIMUM RATINGS


Symbol	Parameter	Value	Unit	
V _{CC} (*)	Supply Voltage	+ 35	V	
V _{I1} V _{I2} V _{reset} V _{strobe}	Input Voltages	30 to + 55	V	
I ₀	Output Current	Internally Limited	Α	
ΙL	Current In DC/DC Converter Inductance	0.4	Α	
Ptot	Total Power Dissipation	Internally Limited	W	
Toper	Operating Free-air Temperature Range	- 40 to + 85	°C	
Tj	Junction Temperature	+ 150	°C	

^{+ 60} V (10 mS)

THERMAL DATA

R _{th(j-c)}	Maximum Junction-case Thermal Resistance	DIP.16	25	°C/W
		Multiwatt	2.5	
R _{th(j-a)}	Maximum Junction-ambient Thermal	DIP.16	70	°C/W
	Resistance	Multiwatt	40	

BLOCK DIAGRAM

ELECTRICAL CHARACTERISTICS

 V_{CC} = + 24 V, -40 °C, \leq T_{amb} \leq + 85 °C (unless otherwise specified)

Symbol	Parameter	Min.	Typ.	Max.	Unit
Vcc	Supply Voltage	8		32	V
Icc	Supply Current Input 1 = Input 2 : Low Input 1 = Input 1 : High, I _O = 2 x 2 A	_	7 25	32	mA
J ₁	Input Current (all inputs) $ \begin{array}{l} V_1 > V_{ret} \\ V_1 < V_{ref} \end{array} $		15 0	50	
I _{OHA}	High Level Alarm Output Leakage Current (V _A = + 10 V)		0	10	μА
VOLA	Low Level Alarm Output Voltage (I _A = + 10 mA)		1.1	1.3	V
V _{CC} - V _O	Power Outputs Dropout Voltage $I_O = 0.5 \text{ A}$ $I_O = 1 \text{ A}$ $I_O = 2 \text{ A}$		0.15 0.3 0.6	0.25 0.4 0.7	V
loL	Power Outputs Leakage Current			100	μА
treset	Reset Pulse Duration (C1 = C2 = 1 μF)		400		mS
t _d	Delay Time before Desaturation Monitoring Unit Becomes Active (C1 = C2 = 1μ F) $V_{CC} - V_O = + 12 V$ $V_{CC} - V_O = + 24 V$ $V_{CC} - V_O = + 32 V$		20 10 5		mS
V _{ref}	Reference Input Voltage	1.4		55	V
I _{ref}	Reference Input Current (V_{ret} = 1.4 V) All Inputs < V_{ret} All Inputs > V_{ret}	- 1	80 0	150 + 1	μА
10	Available Output Current $\begin{array}{ccc} & & & & & & & & & & \\ & & & & & & & & $	2.5 1 2.5 2 1 2			А
V _{CC} - V _O	Maximum Output Voltage Swing		-	50	V
V _{aux} - V _{CC}	DC/DC Output Voltage 0.5 A < I_0 < 2 A (each output) CO = 47 μ F, L = 100 μ H		1.25		V

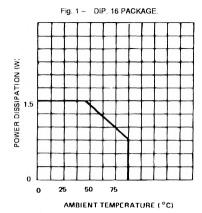


Fig. 3 – AVAILABLE OUTPUT CURRENT VS EXTERNAL RESISTANCE VALUE DIP. 16 PACKAGE.

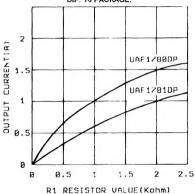


Fig 5 RESPONSE TIME

O 0.4 0.8

TIME (µS)

Fig 2 - MULTIWATT PACKAGE

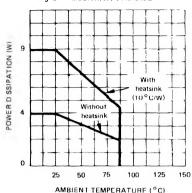


Fig. 4 - SATURATION VOLTAGE VS

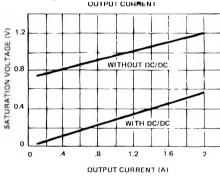
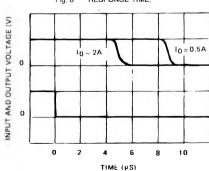
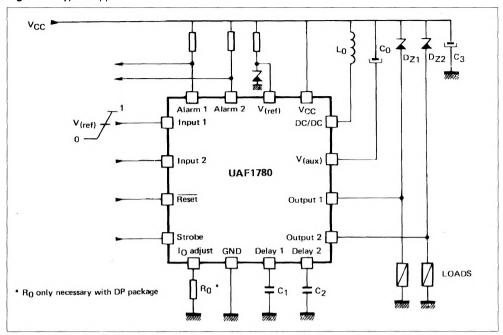
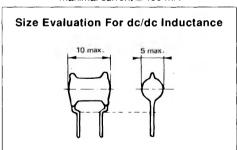


Fig. 6 RESPONSE TIME.


Figure 7: Typical Application.

 L_O and C_O are the external elements of the dc/dc converter. Typical values and characteristics of these components are as follows:

For L_O : - inductance = 100 μ H (tolerance + 10%)

- maximal current ≥ 400 mA

For C_0 : The value of this capacitor is not critical, a capacitor of $C1 \ge 47$ F, $Vn \ge 6.3$ V will be suitable for the majority of the applications.

The on-chip dc/dc converter can be disabled by connecting $V_{(aux)}$ terminal to V_{CC} and leaving "Oscillator" pin floating.

- C₁ and C₂ implement two distinct functions :
 - response time required by the desaturation monitoring unit to become active.
 - time delay imposed on each power output prior to conduction.

$$t_d = \frac{C \cdot 3.5 \text{ V}}{7 \,\mu\text{A}}$$

With $C_2 = C_3 = 1 \mu F$, the outputs are protected against voltage transients of as high as + 32 V and the response time of the desaturation monitoring unit is 400 ms.

- Dz1 and Dz2 Zener Diodes are required in the case of inductive loads. Vz of these diodes should be < 60 V.
- R₀ determines the value of maximum output current (DIP package). Its value is given in curve 3, where output current values are plotted against the corresponding values of this resistor.