

DS8934 V.34 Serial Port 5 X 3 Driver/Receiver

General Description

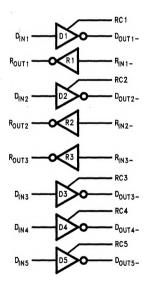
The DS8934 is a 5 driver X 3 receiver device optimized to provide a single chip solution for an asynchronous V.34 (V.FAST) modem serial port. The TIA/EIA-423-B (V.10) single-ended drivers are compatible with EIA/TIA-232-E (V.28) receivers, and the receivers are compatible with TIA/EIA-423-B (V.10) and EIA/TIA-232-E (V.28) drivers.

The drivers provide a minimum output voltage of ± 3.6 V, while the receivers offer a +1.4V threshold, a failsafe output state, and an input range of ± 10 V minimum.

Both the drivers and the receivers provide an inverting logic function and the drivers are electrically similar to the industry standard 26LS30 (3691) devices. The pinout of the device maps the common DB-9 connector, and provides a straight through connection. The device is available in a surface mount 24-pin package.

Features

- Single chip solution for V.34 async. modem serial port
- Companion 2 X 1 D\$8933 for dual chip sync. serial port
- Conforms to industry standards: TIA/EIA-423-B.1994 (RS-423) ITU-T V.10 (formerly CCITT)
- Compatible with EIA/TIA-232-E (RS-232) and ITU-T
- V.28 (formerly CCITT) drivers and receivers


 Adjustable driver slew rate reduces noise generation
- Operates above 1 Mbps
- Wide receiver input voltage range ±10V
- +1.4V receiver threshold with hysteresis
- Failsafe receivers: output high for open input
- Available in SOIC packaging

Connection Diagram

Dual-In-Line DIN 1 23 - RC 1 22 DOUT 1-R_{OUT 1} D_{IN2} 21 20 -RC2 R_{OUT2} 19 - D_{OUT2}-R_{OUT3} GND --RIN2-DINZ RIN3--RC3 DINA D_{IN5} -Douts-RC5 -RC4 13 DOUT4-

Order Number DS8934WM See NS Package Number M24B

Functional Diagram

TL/F/12373-2

TL/F/12373-1

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Office/Distributors for availability and specific	ations.
Supply Voltage (V _{CC})	+ 7V
Supply Voltage (VEE)	-7V
Driver Input Voltage (D _{IN})	+7V
Driver Output Voltage (Power Off: DOUT)	± 15V
Receiver Input Voltage (Input to GND: RIN)	±25V
Receiver Output Voltage (R _{OUT})	+5.5V
Maximum Package Power Dissipation @ +25°C	
WM Package	1.3W

Recommended Operating Conditions

	Min	Typ	Max	Units
Supply Voltage (V _{CC})	+ 4.75	+ 5.0	+ 5.25	V
Supply Voltage (VEE)	-4.75	-5.0	-5.25	٧
Operating Free Air				
Temperature (T _A)	0	25	70	°C

Electrical Characteristics

Derate WM Package 10.7 mW/°C above +25°C

Over Supply Voltage and Operating Temperature ranges, unless otherwise specified (Notes 2 and 3)

Symbol	Parameter	Conditions	Pin	Min	Тур	Max	Units
DRIVER CH	IARACTERISTICS						
V _O	Output Voltage	$R_L = \infty$ or $R_L = 3.9 \text{ k}\Omega$, Figure 1			4.4	6	V
V _T	Output Voltage	$R_L = 3 k\Omega$, Figure 1		3.7	4.3		V
		$R_L = 450\Omega$, Figure 1		3.6	4.1		V
ΔV _T	Output Unbalance]		0.1	0.4	٧
losp	Short Circuit Current	V _O = 0V, Sourcing Current	1		-100	-150	mA
		V _O = 0V, Sinking Current	D _{OUT} .		80	150	mA
IOXD	Power-off Leakage	V _O = +10V			1	150	μΑ
	Current	V _O = +6V			1	100	μΑ
	$(V_{CC} = V_{EE} = 0V)$	$V_O = -6V$]		-1	-100	μΑ
		V _O = -10V			-1	-150	μΑ
V _{CM}	Common Mode Range	Power Off		± 10			V
V _{IH}	High Level Input Voltage			2.0			V
V _{IL}	Low Level Input Voltage					0.8	V
Чн	High Level Input Current	V _{IN} = 2.4V	DIN		1	40	μΑ
I _{IH}	Low Level Input Current	V _{IN} = 0.4V	1		-3	-200	μΑ
V _{CL}	Input Clamp Voltage	I _{IN} = -12 mA	1		-0.7	-1.5	V
RECEIVER	CHARACTERISTICS						
V _T -	Negative-Going Threshold Voltage	(See Figure 7)		0.9	1.36	i	٧
V _{T+}	Positive-Going Threshold Voltage				1.4	1.7	٧
V _{HY}	Hysteresis		l		40		mV
R _{IN}	Input Resistance	$-10V \le V_{\text{IN}} \le +10V$	R _{IN} -	4.0	6.0	8.0	kΩ
I _{IN}	Input Current	V _{IN} = +10V			1.6	3.25	mA
	(Power on, or	V _{IN} = +3V		0	0.38	1.50	mA
	Power off —	V _{IN} = -3V]	0	-0.67	-1.50	mA
	$V_{CC} = V_{EE} = 0V$	V _{IN} = -10V	<u>l</u>		-1.9	-3.25	mA
V _{OH}	High Level Output Voltage	$I_{OH} = -400 \mu\text{A}, V_{IN} - 3V$		3.5	4.2		٧
		$I_{OH} = -400 \mu\text{A}, V_{IN} \text{OPEN}$] B.	3.5	4.2		٧
V _{OL}	Low Level Output Voltage	$I_{OL} = 8.0 \text{ mA}, V_{IN} = +3V$	Rout		0.3	0.5	٧
IOSR	Short Circuit Current	$V_{O} = 0V$ -15 -35		-85	mA		

Electrical Characteristics

Over Supply Voltage and Operating Temperature ranges, unless otherwise specified (Notes 2 and 3) (Continued)

Symbol	Parameter	Conditions	Pin	Min	Тур	Max	Units
EVICE CHARA	ACTERISTICS	9.11	4"				
lcc	Power Supply Current	No Load	Vcc		46	65	mA
IEE	Power Supply Current	1 m 2 4	VEE		-10	-20	mA'

Switching Characteristics

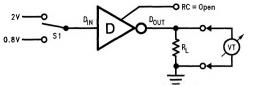
Over Supply Voltage and Operating Temperature ranges, unless otherwise specified. (Notes 4 and 5)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
DRIVER CHAI	RACTERISTICS	D. C.	in 1	-1	***	-
t _{PHL}	Propagation Delay High to Low	$R_L = 450\Omega$, $C_L = 50$ pF, $C_C = Open$	40	175	300	ns
t _{PLH}	Propagation Delay Low to High	(<i>Figures 2</i> and <i>3</i>)	40	125	300	ns
tsk	Skew, t _{PHL} -t _{PLH}		0	50	150	ns
t _{toc}	Transition Time Coefficient	$(t_{tCC}(C_C) = t_t, \text{ where } t_t = t_r \text{ or } t_f)$		54		ns/pF
t _r	Rise Time	$R_L = 450\Omega$, $C_L = 50 pF$,		100	250	ns
t _f	Fall Time	C _C = Open (Figures 2 and 3)		50	250	ns
tr	Rise Time	$R_L = 3 k\Omega, C_L = 2,500 pF,$		275	475	ns
t _f	Fall Time	C _C = 5 pF (<i>Figures 2</i> and <i>3</i>)		275	475	ns
SR	Slew Rate (±3V)	Maximum Load (V.28/232)	12.6	21		V/µs
t _r	Rise Time	$R_L = 3 k\Omega, C_L = 2,500 pF,$	1-	800	4 -	ns
t _f	Fall Time	C _C = 15 pF		800	,	ns
SR	Slew Rate (±3V)	(<i>Figures 2</i> and <i>3</i>) Maximum Load (V.28/232)		7		V/μs
t _r	Rise Time	$R_L = 7 k\Omega$, $C_L = 50 pF$,	1)	800		ns
t _f	Fall Time	C _C = 15 pF		800		ns
SR	Slew Rate (±3V)	(<i>Figures 2</i> and <i>3</i>) Minimum Load (V.28/232)		7	*	V/µs
RECEIVER CH	HARACTERISTICS			10	0.	
t _{PHL}	Propagation Delay High to Low	C _L = 15 pF (<i>Figures 4</i> and <i>5</i>)	10	29	75	ns
t _{PLH}	Propagation Delay Low to High		10	26	75	ns
tsk	Skew, tpHL-tpLH		0	3	20	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" specifies conditions of device operation.

Note 2: Current into device pins is defined as positive. Current out of device pins is defined as negative. All voltages are referenced to ground.

Note 3: All typicals are given for: $V_{CC} = +5.0V$, $V_{EE} = -5.0V$, $V_{EE} = -$


Note 4: Generator waveform for all tests unless otherwise specified: f=500 kHz, $Z_0=50\Omega$, $t_f\leq 10$ ns. $t_f\leq 10$ ns.

Note 5: C_L includes probe and jig capacitance.

Note 6: All diodes are 1N916 or equivalent.

Note 7: ESD rating HBM (1.5 k Ω , 100 pF) \geq 2 kV.

Parameter Measurement Information

TL/F/12373~3

TL/F/12373-6

FIGURE 1. Driver DC Test Circuit

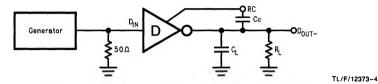


FIGURE 2. Driver Propagation Delay and Transition Time Test Circuit

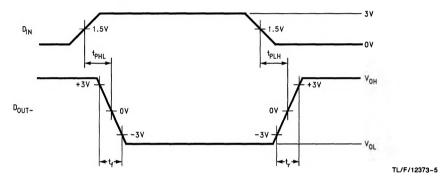


FIGURE 3. Driver Propagation Delay and Transition Time Waveform

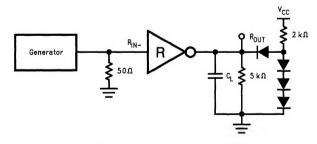


FIGURE 4. Receiver Propagation Delay Test Circuit (Note 6)

Parameter Measurement Information (Continued)

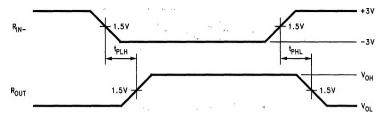


FIGURE 5. Receiver Propagation Delay Waveform

Pin Descriptions

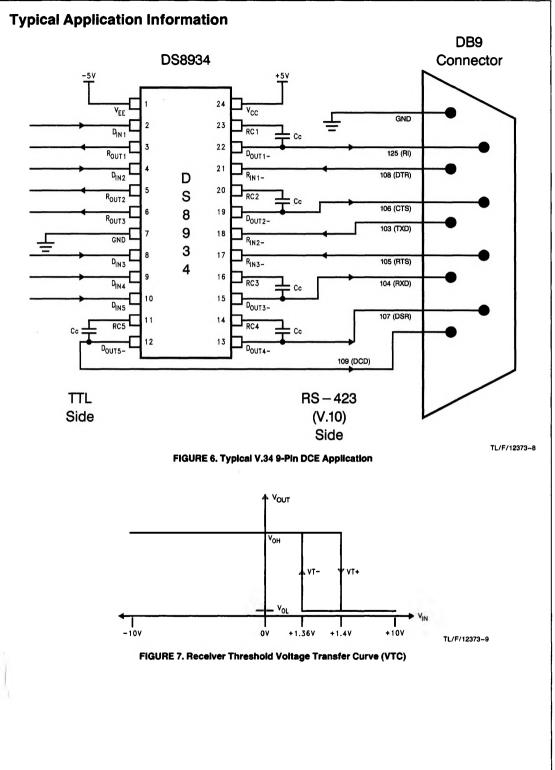
Pin#	Name	Description
2, 4, 8, 9, 10	D _{IN}	TTL Driver Input Pins
12, 13, 15, 19, 22	D _{OUT}	Inverting Driver Output Pin
11, 14, 16, 20, 23	RC :	Driver Response Control Pin
17, 18, 21	R _{IN} -	Inverting Receiver Input Pin
3, 5, 6	ROUT	Receiver Output Pin
7	GND	Ground Pin
1	VEE	Negative Power Supply Pin, $-5V \pm 5\%$
24	Vcc	Positive Power Supply Pin, +5V ±5%

Truth Tables

Driver (D1-5)

Input D _{IN}	Output D _{OUT} -
L	н
Н	L

Receiver (R1-3)


TL/F/12373-7

Input R _{IN}	Output R _{OUT}
≤+0.9V	Н
≥ + 1.7V	L
OPEN†	н

tOPEN = non-terminated

H = Logic high level (steady state) L = Logic low level (steady state)

Typical Application Information (Continued)

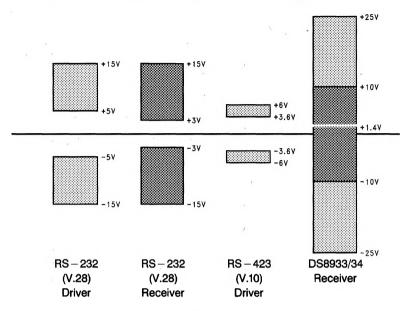


FIGURE 8. RS-423 and RS-232 Levels

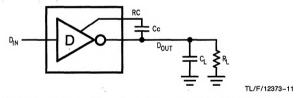


FIGURE 9. External Slew Rate Control Capacitor Connection

TL/F/12373-10