# DS75154

DS75154 Quad Line Receiver



Literature Number: SNOSBL1A

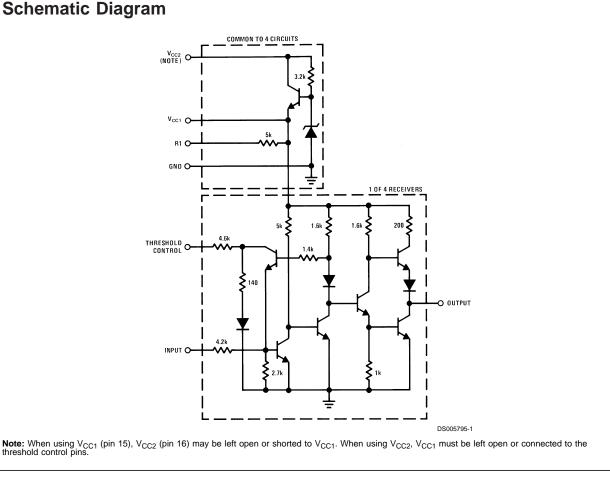
May 1998

S75154 Quad Line Receiver



## DS75154 Quad Line Receiver General Description

The DS75154 is a quad monolithic line receiver designed to satisfy the requirements of the standard interface between data terminal equipment and data communication equipment as defined by EIA Standard RS-232C. Other applications are in relatively short, single-line, point-to-point data transmission systems and for level translators. Operation is normally from a single 5V supply; however, a built-in option allows operation from a 12V supply without the use of additional components. The output is compatible with most TTL and LS circuits when either supply voltage is used.


In normal operation, the threshold-control terminals are connected to the V<sub>CC1</sub> terminal, pin 15, even if power is being supplied via the alternate V<sub>CC2</sub> terminal, pin 16. This provides a wide hysteresis loop which is the difference between the positive-going and negative-going threshold voltages. In this mode, if the input voltage goes to zero, the output voltage will remain at the low or high level as determined by the previous input.

For fail-safe operation, the threshold-control terminals are open. This reduces the hysteresis loop by causing the

negative-going threshold voltage to be above zero. The positive-going threshold voltage remains above zero as it is unaffected by the disposition of the threshold terminals. In the fail-safe mode, if the input voltage goes to zero or an open-circuit condition, the output will go to the high level regardless of the previous input condition.

#### **Features**

- Input resistance, 3 kΩ to 7 kΩ over full RS-232C voltage range
- Input threshold adjustable to meet "fail-safe" requirements without using external components
- Inverting output compatible with TTL or LS
- Built-in hysteresis for increased noise immunity
- Output with active pull-up for symmetrical switching speeds
- Standard supply voltage—5V or 12V



### Absolute Maximum Ratings (Note 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

| Normal Supply Voltage (Pin 15),<br>(V <sub>CC1</sub> ) | 7V              |
|--------------------------------------------------------|-----------------|
| Alternate Supply Voltage (Pin 16),                     |                 |
| (V <sub>CC2</sub> )                                    | 14V             |
| Input Voltage                                          | ±25V            |
| Storage Temperature Range                              | –65°C to +150°C |
| Maximum Power Dissipation (Note 1) at                  | 25°C            |
| SO Package                                             | 650 mW          |
| Lead Temperature (Soldering, 4 seconds)                | 260°C           |

## **Operating Conditions**

|                                                                          | Min        | Max       | Units  |
|--------------------------------------------------------------------------|------------|-----------|--------|
| Supply Voltage (Pin 15), (V <sub>CC1</sub> )                             | 4.5        | 5.5       | V      |
| Alternate Supply Voltage                                                 |            |           |        |
| (Pin 16), (V <sub>CC2</sub> )                                            | 10.8       | 13.2      | V      |
| Input Voltage                                                            |            | ±15       | V      |
| Temperature, (T <sub>A</sub> )                                           | 0          | +70       | °C     |
| Note 1: Derate molded DIP package 10.9 mW package 8.01 mW/°C above 25°C. | //°C above | 25°C; der | ate SO |

## Electrical Characteristics (Notes 3, 4, 5)

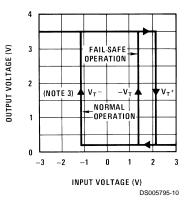
| Symbol               | Parameter                                | Conditions                                                                                                     |                           | Min | Тур  | Max | Units |
|----------------------|------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------|-----|------|-----|-------|
| V <sub>IH</sub>      | High-Level Input Voltage                 | (Figure 1)                                                                                                     |                           | 3   |      |     | V     |
| V <sub>IL</sub>      | Low-Level Input Voltage                  | (Figure 1)                                                                                                     |                           |     |      | -3  | V     |
| V <sub>T+</sub>      | Positive-Going Threshold Voltage         | (Figure 1)                                                                                                     | Normal Operation          | 0.8 | 2.2  | 3   | V     |
|                      |                                          |                                                                                                                | Fail-Safe Operation       | 0.8 | 2.2  | 3   | V     |
| V <sub>T-</sub>      | Negative-Going Threshold Voltage         | (Figure 1)                                                                                                     | Normal Operation          | -3  | -1.1 | 0   | V     |
|                      |                                          |                                                                                                                | Fail-Safe Operation       | 0.8 | 1.4  | 3   | V     |
| $V_{T+}-V_{T-}$      | Hysteresis                               | (Figure 1)                                                                                                     | Normal Operation          | 0.8 | 3.3  | 6   | V     |
|                      |                                          |                                                                                                                | Fail-Safe Operation       | 0   | 0.8  | 2.2 | V     |
| V <sub>OH</sub>      | High-Level Output Voltage                | I <sub>OH</sub> =-400 μA, ( <i>Figure 1</i> )                                                                  |                           | 2.4 | 3.5  |     | V     |
| V <sub>OL</sub>      | Low-Level Output Voltage                 | I <sub>OL</sub> =16 mA, ( <i>Figure 1</i> )                                                                    |                           |     | 0.23 | 0.4 | V     |
| r <sub>l</sub>       | Input Resistance                         | $\begin{array}{ c c c c c c c c } \hline (Figure \ 2) & & & & & & & \\ \hline & & & & & & & \\ \hline & & & &$ |                           | 3   | 5    | 7   | kΩ    |
|                      |                                          |                                                                                                                |                           | 3   | 5    | 7   | kΩ    |
|                      |                                          |                                                                                                                |                           | 3   | 6    |     | kΩ    |
|                      |                                          |                                                                                                                |                           | 3   | 5    | 7   | kΩ    |
|                      |                                          |                                                                                                                | $\Delta V_I = 14V$ to 25V | 3   | 5    | 7   | kΩ    |
| V <sub>I(OPEN)</sub> | Open-Circuit Input Voltage               | I <sub>1</sub> =0, ( <i>Figure 3</i> )                                                                         |                           | 0   | 0.2  | 2   | V     |
| I <sub>os</sub>      | Short-Circuit Output Current<br>(Note 6) | $V_{CC1}$ =5.5V, $V_{I}$ =-5V, ( <i>Figure 4</i> )                                                             |                           | -10 | -20  | -40 | mA    |
| I <sub>CC1</sub>     | Supply Current From V <sub>CC1</sub>     | V <sub>CC1</sub> =5.5V, T <sub>A</sub> =25°C, ( <i>Figure 5</i> )                                              |                           |     | 20   | 35  | mA    |
| I <sub>CC2</sub>     | Supply Current From V <sub>CC2</sub>     | V <sub>CC2</sub> =13.2V, T <sub>A</sub> =25°C, ( <i>Figure 5</i> )                                             |                           |     | 23   | 40  | mA    |

## **Switching Characteristics**

(V<sub>CC1</sub>=5V, T<sub>A</sub>=25°C)

| Symbol           | Parameter                           | Conditions                                                       | Min | Тур | Max | Units |
|------------------|-------------------------------------|------------------------------------------------------------------|-----|-----|-----|-------|
| t <sub>PLH</sub> | Propagation Delay Time, Low-to-High | C <sub>L</sub> =50 pF, R <sub>L</sub> =390Ω, ( <i>Figure 6</i> ) |     | 22  |     | ns    |
|                  | Level Output                        |                                                                  |     |     |     |       |
| t <sub>PHL</sub> | Propagation Delay Time, High-to-Low | C <sub>L</sub> =50 pF, R <sub>L</sub> =390Ω, ( <i>Figure 6</i> ) |     | 20  |     | ns    |
|                  | Level Output                        |                                                                  |     |     |     |       |
| t <sub>TLH</sub> | Transition Time, Low-to-High Level  | C <sub>L</sub> =50 pF, R <sub>L</sub> =390Ω, ( <i>Figure 6</i> ) |     | 9   |     | ns    |
|                  | Output                              |                                                                  |     |     |     |       |
| t <sub>THL</sub> | Transition Time, High-to-Low Level  | C <sub>L</sub> =50 pF, R <sub>L</sub> =390Ω, ( <i>Figure 6</i> ) |     | 6   |     | ns    |
|                  | Output                              |                                                                  |     |     |     |       |

Note 2: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.


Note 3: Unless otherwise specified min/max limits apply across the 0°C to +70°C range for the DS75154. All typical values are for T<sub>A</sub>=25°C and V<sub>CC1</sub>=5V. Note 4: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

## Switching Characteristics (Continued)

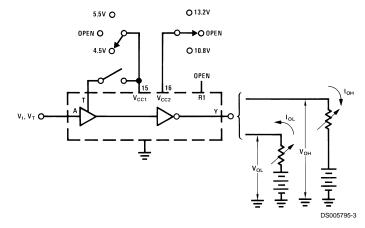
Note 5: The algebraic convention where the most-positive (least-negative) limit is designated as maximum is used in this data sheet for logic and threshold levels only, e.g., when -3V is the maximum, the minimum limit is a more-negative voltage. Note 6: Only one output at a time should be shorted.


## **Typical Performance Characteristics**

#### **Output Voltage vs Input Voltage**



## **Connection Diagram**


#### **Dual-In-Line Package**

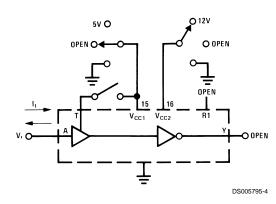


Top View Order Number DS75154M See NS Package Number M16A

# DS75154

## **DC Test Circuits and Truth Tables**

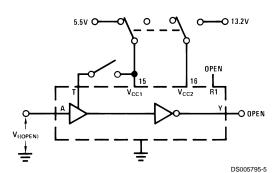



| Test                                      | Measure         | Α        | Т      | Y               | V <sub>cc1</sub> | V <sub>CC2</sub> |
|-------------------------------------------|-----------------|----------|--------|-----------------|------------------|------------------|
|                                           |                 |          |        |                 | (Pin 15)         | (Pin 16)         |
| Open-Circuit Input                        | V <sub>он</sub> | Open     | Open   | I <sub>он</sub> | 4.5V             | Open             |
| (Fail-Safe)                               | V <sub>OH</sub> | Open     | Open   | I <sub>он</sub> | Open             | 10.8V            |
| V <sub>T+</sub> min,                      | V <sub>OH</sub> | 0.8V     | Open   | I <sub>он</sub> | 5.5V             | Open             |
| V <sub>T-</sub> (Fail-Safe)               | V <sub>OH</sub> | 0.8V     | Open   | I <sub>он</sub> | Open             | 13.2V            |
| V <sub>T+</sub> min (Normal)              | V <sub>OH</sub> | (Note 7) | Pin 15 | I <sub>он</sub> | 5.5V and T       | Open             |
|                                           | V <sub>OH</sub> | (Note 7) | Pin 15 | I <sub>он</sub> | Т                | 13.2V            |
| V <sub>IL</sub> max,                      | V <sub>OH</sub> | -3V      | Pin 15 | I <sub>он</sub> | 5.5V and T       | Open             |
| V <sub>T-</sub> min (Normal)              | V <sub>он</sub> | -3V      | Pin 15 | I <sub>он</sub> | Т                | 13.2V            |
| V <sub>IH</sub> min, V <sub>T+</sub> max, | V <sub>OL</sub> | 3V       | Open   | I <sub>OL</sub> | 4.5V             | Open             |
| V <sub>T-</sub> max (Fail-Safe)           | V <sub>OL</sub> | 3V       | Open   | I <sub>OL</sub> | Open             | 10.8V            |
| V <sub>IH</sub> min, V <sub>T+</sub> max, | V <sub>OL</sub> | 3V       | Pin 15 | I <sub>OL</sub> | 4.5V and T       | Open             |
| (Normal)                                  | V <sub>OL</sub> | 3V       | Pin 15 | I <sub>OL</sub> | Т                | 10.8V            |
| V <sub>T</sub> _ max (Normal)             | V <sub>OL</sub> | (Note 8) | Pin 15 | I <sub>OL</sub> | 5.5V and T       | Open             |
|                                           | V <sub>OL</sub> | (Note 8) | Pin 15 | I <sub>OL</sub> | Т                | 13.2V            |

Note 7: Momentarily apply -5V, then 0.8V.

Note 8: Momentarily apply 5V, then ground.

FIGURE 1.  $V_{IH}$ ,  $V_{IL}$ ,  $V_{T+}$ ,  $V_{T-}$ ,  $V_{OH}$ ,  $V_{OL}$ 

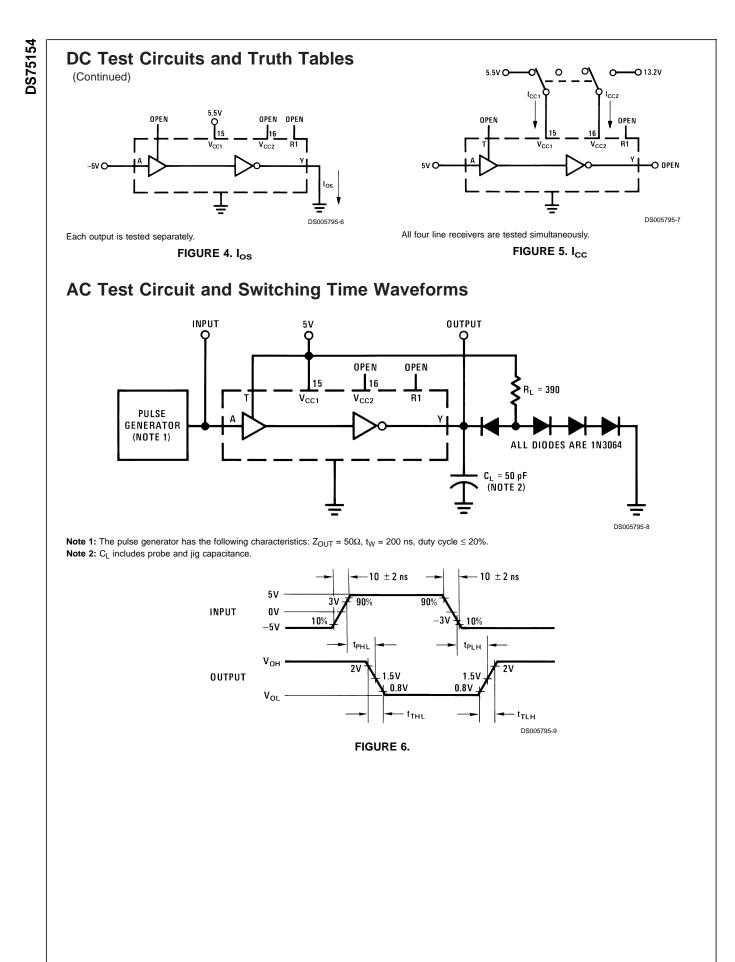

## DC Test Circuits and Truth Tables (Continued)



$$r_1 = \frac{\Delta V_1}{\Delta I_1}$$

| т      | V <sub>cc1</sub> | V <sub>CC2</sub> |
|--------|------------------|------------------|
|        | (Pin 15)         | (Pin 16)         |
| Open   | 5V               | Open             |
| Open   | Gnd              | Open             |
| Open   | Open             | Open             |
| Pin 15 | T and 5V         | Open             |
| Gnd    | Gnd              | Open             |
| Open   | Open             | 12V              |
| Open   | Open             | Gnd              |
| Pin 15 | Т                | 12V              |
| Pin 15 | Т                | Gnd              |
| Pin 15 | Т                | Open             |

FIGURE 2. r<sub>I</sub>



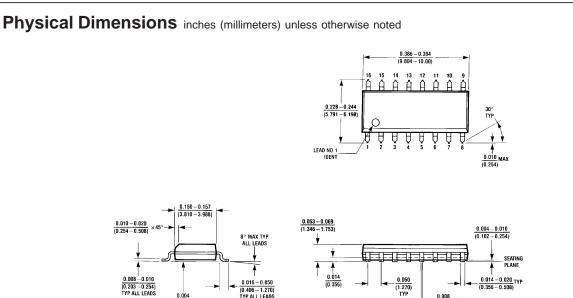


| Т      | V <sub>cc1</sub><br>(Pin 15) | V <sub>CC2</sub><br>(Pin 16) |
|--------|------------------------------|------------------------------|
| Open   | 5.5V                         | Open                         |
| Pin 15 | 5.5V                         | Open                         |
| Open   | Open                         | 13.2V                        |
| Pin 15 | Т                            | 13.2V                        |

FIGURE 3. VI(OPEN)

www.national.com

DS75154





SO Package (M) Order Number DS75154M NS Package Number M16A

(0.102) ALL LEAD TIPS

#### LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

0.008 (0.203) TYP

M16A (REV H)

| nctor National Semiconductor<br>Ner Japan Ltd. |
|------------------------------------------------|
| Tel: 81-3-5639-7560                            |
| Fax: 81-3-5639-7507                            |
|                                                |
| sc.com                                         |
|                                                |
|                                                |
| <b>)</b>                                       |

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

#### **IMPORTANT NOTICE**

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

| Products               |                                 | Applications                  |                                   |
|------------------------|---------------------------------|-------------------------------|-----------------------------------|
| Audio                  | www.ti.com/audio                | Communications and Telecom    | www.ti.com/communications         |
| Amplifiers             | amplifier.ti.com                | Computers and Peripherals     | www.ti.com/computers              |
| Data Converters        | dataconverter.ti.com            | Consumer Electronics          | www.ti.com/consumer-apps          |
| DLP® Products          | www.dlp.com                     | Energy and Lighting           | www.ti.com/energy                 |
| DSP                    | dsp.ti.com                      | Industrial                    | www.ti.com/industrial             |
| Clocks and Timers      | www.ti.com/clocks               | Medical                       | www.ti.com/medical                |
| Interface              | interface.ti.com                | Security                      | www.ti.com/security               |
| Logic                  | logic.ti.com                    | Space, Avionics and Defense   | www.ti.com/space-avionics-defense |
| Power Mgmt             | power.ti.com                    | Transportation and Automotive | www.ti.com/automotive             |
| Microcontrollers       | microcontroller.ti.com          | Video and Imaging             | www.ti.com/video                  |
| RFID                   | www.ti-rfid.com                 |                               |                                   |
| OMAP Mobile Processors | www.ti.com/omap                 |                               |                                   |
| Wireless Connectivity  | www.ti.com/wirelessconnectivity |                               |                                   |
|                        |                                 | u Hama Dawa                   | a O a Al a a m                    |

**TI E2E Community Home Page** 

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated