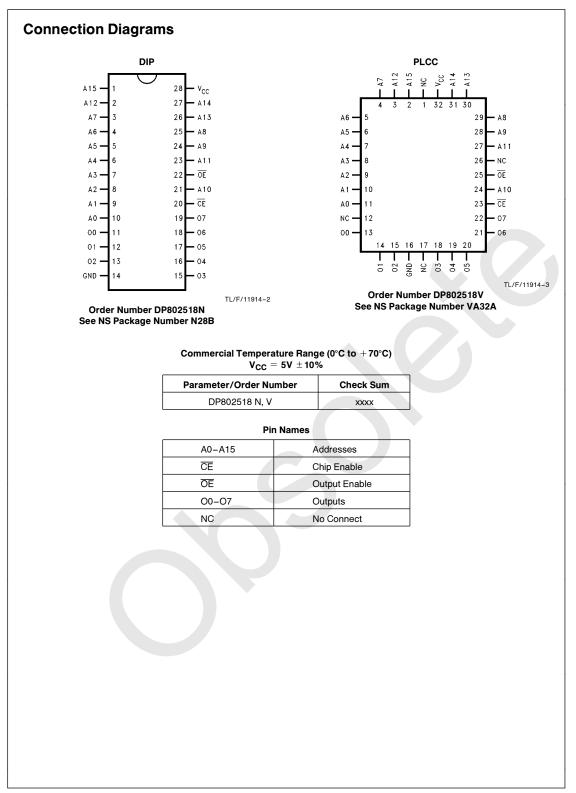
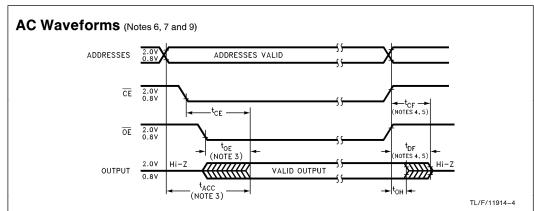

DP802518


DP802518 TROPIC Tsunami(TM) TROPIC II(TM) Microcode ROM


Literature Number: SNOS698A

DP802518 TROPIC Tsunami TROPIC II Microcode ROM

Absolute Maximum Ratings (No If Military/Aerospace specified devices are n			required,	-	ating R	Temperat	ture	V _{CC}	
please contact the National Semiconducto Office/Distributors for availability and specific				Commercial		0°C to +70°C		5V ±10%	
			o + 150°C		merciai			01 10/0	
All Input Vol Respect to	0	-0.6	V to +7V						
	Voltage with	0.0							
Respect to Ground -0.6 ESD Protection			V to +7V >2000V						
Respect to		V_{CC} + 1.0V to GN	ID -0.6V						
	peration ctrical Ch	aracteristics o)ver operating	range					
Symbol	I	arameter		t Condition	s	Min	Max	Unit	
VIL	Input Low	evel				-0.5	0.8	v	
VIH	Input High	Level				2.0	$V_{CC} + 1$	V	
V _{OL}	Output Lov	v Voltage	I _{OL} = 2.1 mA			0.4	V		
V _{OH}	Output Hig	h Voltage	I _{OH} = -400 μA		3.5		V		
SB1	V _{CC} Stand	by Current (CMOS)	$\overline{\text{CE}} = \text{V}_{\text{CC}} \pm 0.3 \text{V}$				100	μΑ	
SB2	V _{CC} Stand	by Current	$\overline{CE} = V_H$			1	mA		
lcc	V _{CC} Active	Current	$\overline{CE} = \overline{OE} = V_{IL}, I/O = 0 \text{ mA}$			40	mA		
LI	Input Load	Current	$V_{IN} = 5.5V \text{ or GND}$		-1	1	μΑ		
LO	Output Lea	akage Current	$V_{OUT} = 5.5V, OR GND$		-10	10	μΑ		
AC Elec	ctrical Ch	aracteristics of	over operating	range					
Symbol		Parameter			Min	Max		Units	
t _{ACC}	ļ	Address to Output Delay				12	20		
t _{CE} CE to Output Delay					120				
t _{OE} OE to Output Delay				50		ns			
t _{DF} Output Disable to Output (Note 2)		t Float		25					
t _{OH} Output Hold From Addre (Note 2) Whichever Occurred Fir									
Capacit	tance T _A =	+ 25°C, 1 = 1 MHz (N	ote 2)						
[Symbol	Parameter	Co	nditions	Тур	Мах	Units		
	CIN	Input Capacitance	VIN	= 0V	13	20	pF		
L	COUT	Output Capacitanc	ve V _O	UT = 0V	13	20	pF		
AC Tes	t Conditio	ons							
			Gate and	Input Pul	se Levels			0.45V to 2.4	
Julpul Load			$C_L = 100 \text{ pF}$ (Note 8) Timing Measurem			ent Level (Note 8)			
Output Load	nd Fall Time	$C_L = 100 pF$	⁼ (Note 8) ≤5 ns	Timing N Inputs	leasuremen	t Level (Note	8)	(Note) 0.8V and 2	

Note 1: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operations sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note 2: This parameter is only sampled and is not 100% tested.

Note 3 $\overline{\text{OE}}$ may be delayed up to t_{ACC} - t_{OE} after the falling edge of $\overline{\text{CE}}$ without impacting t_{ACC} .

Note 4: The t_{DF} and t_{CF} compare level is determined as follows

High to TRI-STATE®, the measure V_{CH1} (DC) - 0.10V;

Low to TRI-STATE, the measured V_{OL1} (DC) \pm 0.10V.

Note 5: TRI-STATE may be attained using \overline{OE} or \overline{CE} .

Note 6: The power switching characteristics of EPROMs require careful device decoupling. It is recommended that at least a 0.2 µF ceramic capacitor be used on every device between V_{CC} and GND.

Note 7: The outputs must be restricted to V_{CC} + 1.0V to avoid latch-up and device damage.

Note 8: 1 TTL Gate: I_{OL} = 1.6 mA, I_{OH} = $-400~\mu A.$

CL: 100 pF includes fixture capacitance.

Note 9: Inputs and outputs can undershoot to $\,-2.0V$ for 20 ns max.

Functional Description

DEVICE OPERATION

The three modes of operation of the Tsunami are listed in Table I. It should be noted that all inputs of the three modes are at TTL levels. The power supply required is supplied via the V_{CC} pin and the power supply tolerance should be 5V \pm 10%.

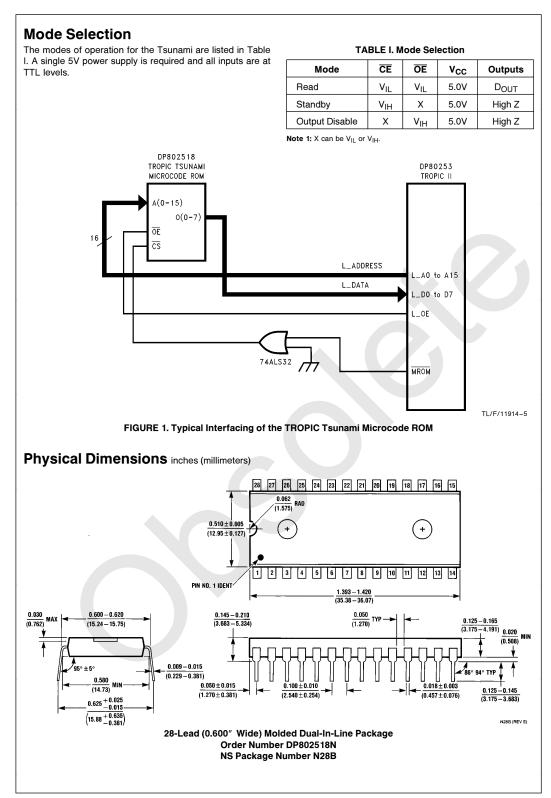
Read Mode

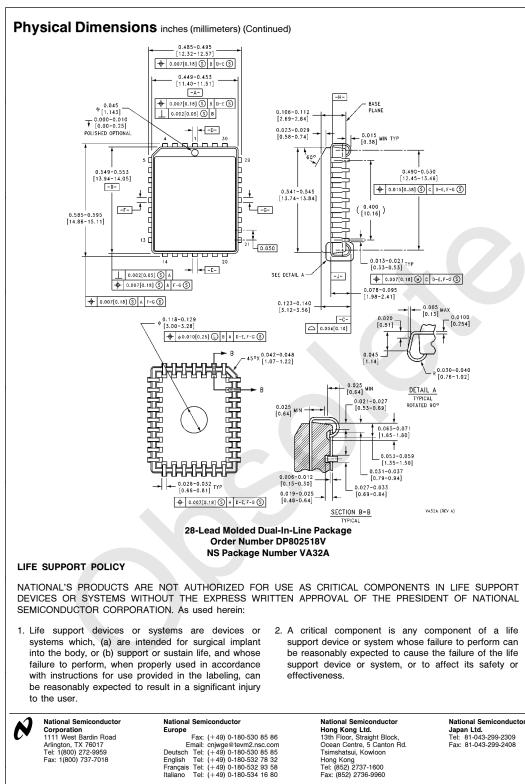
The Tsunami has two control functions, both of which must be logically active to obtain data at the outputs. Chip Enable (\overline{CE}) is the power control and should be used for device selection. Output Enable (\overline{OE}) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (t_{ACC}) is equal to the delay from \overline{CE} to output (t_{CE}) . Data is available at the outputs t_{OE} after the falling edge of \overline{OE} , assuming that \overline{CE} has been low and addresses have been stable for at least $t_{ACC} - t_{OE}$.

Standby Mode

The Tsunami has a standby mode which reduces the active power dissipation drastically, from 275 mW to 0.55 mW. The DP802518 is placed in the standby mode by applying a CMOS high signal to the $\overline{\text{CE}}$ input. When in standby mode, the outputs are in a high impedance state, independent of the $\overline{\text{OE}}$ input.

Output Disable


The DP802518 is placed in output disable by applying a TTL high signal to the \overline{OE} input. When in output disable, all circuitry is enabled except the outputs are in a high impedance state (TRI-STATE).


APPLICATION

In application, the DP802518 is connected to the DP80253 TROPIC II high performance token ring controllers as shown in *Figure 1*. The DP802518 is connected to the TROPIC II with outputs O0 to O7 connected to L_D0-L_ D7 respectively.

SYSTEM CONSIDERATION

The power switching characteristics of Tsunami require careful decoupling of the devices. The supply current $I_{\rm CC}$ has three segments that are of interest to the system designer: The standby current level, the active current level, and the transient current peaks that are produced by the voltage transition on the input pins. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. The associated V_{CC} transient voltage peaks can be suppressed by properly selecting decoupling capacitors. It is recommended that a 0.2 μ F ceramic capacitor be used between V_{CC} and GND for each of the eight devices. The bulk capacitor should be located near the point where the power supply is connected to the subsystem. The bulk capacitor is used to overcome the voltage drop caused by the inductive effects of the PC board traces.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications
Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers
Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps
DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy
DSP	dsp.ti.com	Industrial	www.ti.com/industrial
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
Interface	interface.ti.com	Security	www.ti.com/security
Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Mobile Processors	www.ti.com/omap		
Wireless Connectivity	www.ti.com/wirelessconnectivity		
	a O a Al a a m		

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated