

FULLY DECODED RANDOM ACCESS 1024-BIT DYNAMIC MEMORY

1103

SILICON GATE 2500 SERIES

DESCRIPTION

The Signetics 1103 is designed for main memory applications where high performance, low cost and large bit storage are important design objectives. It is a 1024 word by 1 bit random access memory element using enhancement mode P-channel MOS devices integrated on a monolithic array. It is fully decoded, permitting the use of an 18-pin dual in-line package. The dynamic circuitry dissipates significant power only during precharge. Information stored in the memory is nondestructively read. Refreshing of all 1024 bits is accomplished in 32 read cycles and is required every two milliseconds. A separate cenable (chip enable) lead allows easy selection of an individual package when outputs are OR-tied. Use Signetics 8T25 Sense Amp, and 3207 Clock Driver.

FEATURES

- LOW POWER DISSIPATION DISSIPATES POWER PRIMARILY ON SELECTED CHIPS
- ACCESS TIME 300 nsec.
- CYCLE TIME 580 nsec.
- REFRESH PERIOD 2 MILLISECONDS FOR 0-70°C AMBIENT
- OR-TIE CAPABILITY
- SIMPLE MEMORY EXPANSION WITH CHIP ENABLE
- FULLY DECODED ON-CHIP ADDRESS DECODE
- INPUTS PROTECTED ALL INPUTS HAVE PRO-TECTION AGAINST STATIC CHARGE.
- LOW COST PACKAGING -18 PIN SILICONE AND 18 PIN CERAMIC DUAL IN-LINE

APPLICATIONS

CORE MEMORY REPLACEMENT BUFFER STORES MAIN MEMORY

PROCESS TECHNOLOGY

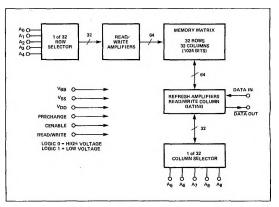
The use of Signetics' unique silicon gate low threshold process allows the design and production of higher performance MOS circuits and provides higher functional density on a chip than other MOS technologies.

SILICONE PACKAGING

Low cost silicone DIP packaging is implemented and reliability is assured by the use of Signetics unique silicon gate MOS process technology. Unlike the standard metal gate MOS process, the silicon material over the gate oxide passivates the MOS transistors, and the deposited dielectric

SILICONE PACKAGING (Cont'd)

material over the silicon gate-oxide-substrate structure provides an ion barrier. In addition, Signetics proprietary surface passivation and silicone packaging techniques result in an MOS circuit with inherent high reliability and demonstrating superior moisture resistance, mechanical shock and ionic contamination barriers.


PIN CONFIGURATION (Top View)

1 □ 2 □ 4 □ 1103XA 5 □ 1103IK 7 □ 7 □ 9 □	118 17 16 15 14 13 12 11 11	3. 4. 5. 6. 7. 8.	Address 2 Address 0 Address 1	17. 16. 15. 14. 13. 12. 11.	Read/write V _{SS} , Cenable Address 4 Data Out Address 8 Data In V DD V BB
---	---	----------------------------------	-------------------------------------	---	---

PART IDENTIFICATION TABLE

TYPE	PACKAGE	OP. TEMP. RANGE
1103XA	18-Pin DIP Silicone	0-70° C
1103IK	18-Pin DIP Ceramic	0-70°C

BLOCK DIAGRAM

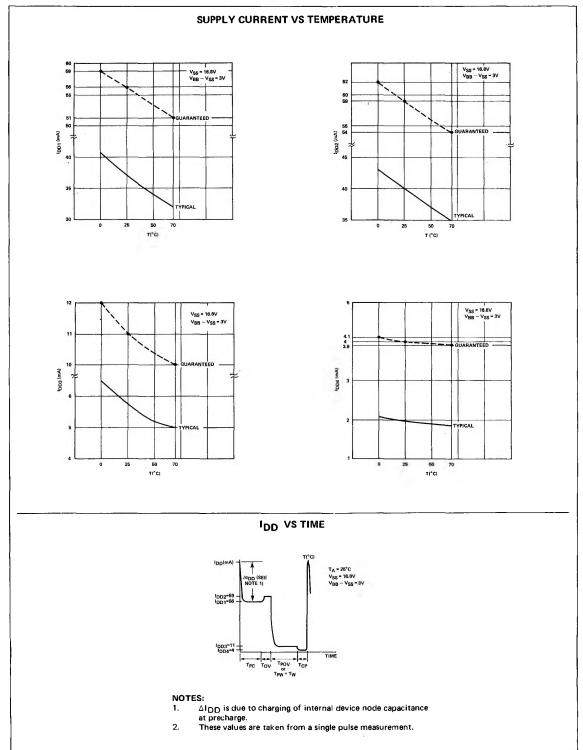
MAXIMUM GUARANTEED RATINGS⁽¹⁰⁾

Operating Ambient Temperature Storage Temperature	0°C to⁻70°C –65°C to +150°C	Supply V with Re
All Input or Output Voltages		Power Di
with Respect to the Most		
Positive Supply Voltage, V _{BB}	–25V to 0.3V	

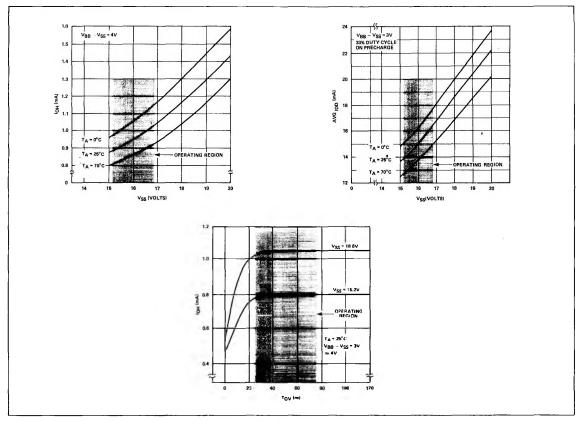
Supply Voltages V_{DD} and V_{SS} with Respect to V_{BB} Power Dissipation

-25V to 0.3V 1.0W

D.C. AND OPERATING CHARACTERISTICS


 $T_A = 0^{\circ}C$ to +70°C, $V_{SS}(1) = 16V \pm 5\%$, $(V_{BB} - V_{SS})(6) = 3V$ to 4V, $V_{DD} = 0V$ unless otherwise specified (Note 9).

SYMBOL	TEST	MIN.	TYP.	MAX.	UNIT	CONDITIONS
1	Input Load Current (All input pins)			1	μA	V _{IN} = 0V, T _A = 25 °C
10	Output Leakage Current			1	μA	V _{OUT} = 0V, T _A = 25 °C
IBB	V _{BB} Supply Current			100	μA	
IDD1 ⁽²⁾	Supply Current During tPC		37	56	mA	All Addresses = 0V Precharge = 0V Cenable = V _{SS} ; T _A = 25°C
IDD2 ⁽²⁾	Supply Current During t_{OV}		38	59	mA	All Addresses = 0V Precharge = 0V Cenable = 0V; T _A = 25°C
I _{DD3} (2)	Supply Current During tpOV		5.5	11	mA	Precharge = V_{SS} Cenable = 0V; T _A = 25°C
¹ DD4 ⁽²⁾	Supply Current During t _{CP}		3	4	mA	Precharge = V_{SS} Cenable = V_{SS} : T_A = 25°C
IDD(5)AV	Average Supply Current		17	25	mA	Cycle Time = 580 ns; Precharge Width = 190 ns; T _A = 25°C
VIL1(7)	Input Low Voltage (All Address & Data-in Lines)	V _{SS} -17		V _{SS} -14.2	v	$T_A = 0^{\circ}C$
V _{IL2} (7)	Input Low Voltage (All Address & Data-in Lines)	V _{SS} -17		V _{SS} -14.5	v	T _A = 70°C
V _{IL3} (7,8)	Input Low Voltage (Precharge Cenable & Read/Write Inputs)	V _{SS} -17		V _{SS} -14.7	v	T _A = 0°C
V _{1L4} (7,8)	Input Low Voltage (Precharge Cenable & Read/Write Inputs)	V _{SS} −17		V _{SS} -15.0	v	T _A = 70°C
VIH1(7)	Input High Voltage (All Inputs)	V _{SS} -1		V _{SS} +1	v	$T_A = 0^\circ C$
VIH2(7)	Input High Voltage (All Inputs)	V _{SS} -0.7		V _{SS} +1	v	T _A = 70°C
IOH1	Output High Current	600	900	4000	μA	T _A = 25°C 1
IOH2	Output High Current	500	800	4000	μA	T _A = 70°C
^I OL	Output Low Current		See Note 3			$-R_{LOAD} = 100\Omega^{(4)}$
VOH1	Output High Voltage	60	90	400	mV	T _A = 25°C
VOH2	Output High Voltage	50	80	400	m∨	$T_A = 70^{\circ}C$
VOL	Output Low Voltage		See Note 3			1


NOTES:

- 1. The V_{SS} current drain is equal to (I_{DD} + I_{OH}) or (I_{DD} + I_{OL}).
- 2. See Supply Current vs. Temperature (p. 3) for guaranteed current at the temperature extremes. These values are taken from a single pulse measurement.
- 3. The output current when reading a low output is the leakage current of the 1103 plus external noise coupled into the output line from the clocks. Vol equals IoL across the load resistor.
- 4. This value of load resistance is used for measurement purposes. In applications the resistance may range from 100Ω to 1 kΩ.
- 5. This parameter is periodically sampled and is not 100% tested.
- 6. (V_{BB} V_{SS}) supply should be applied at or before V_{SS}.
- The maximum values for V_{IL} and the minimum values for V_{IH} are linearly related to temperature between 0°C and 70°C. Thus any value between 0°C and 70°C can be calculated using a straignt-line relationship.
- The maximum values for V_{IL} (for precharge, cenable & read/write) may be increased to V_{SS}-14.2 @ 0°C and V_{SS}-14.5 @ 70°C (same values as those specified for the address and data-in lines) with a 40 ns degradation (worst case) in t_{AC}, t_{PC}, t_{RC}, t_{WC}, t_{RWC}, t_{ACC1} and t_{ACC2}.
 Manufacturer reserves the right to make design and process changes and improvements.
- 10. Stresses above those listed under "Maximum Guaranteed Rating" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

CHARACTERISTIC CURVES

CHARACTERISTIC CURVES (Cont'd)

AC CHARACTERISTICS T_A = 25° C, V_{SS} = $16 \pm 5\%$, (V_{BB} –V_{SS}) = 3.0V to 4.0V, V_{DD} = 0V

READ, WRITE, AND READ/WRITE CYCLE

SYMBOL	TEST	MIN.	TYP.	MAX.	UNIT	CONDITIONS
^t REF	Time Between Refresh			2	ms	
t _{AC} (1)	Address to Cenable Set Up Time	115			ns	
^t CA	Cenable to Address Hold Time	20			ns	
tPC(1)	Precharge to Cenable Delay	125			ns	
tOVL	Precharge & Cenable Overlap, Low	25		75	ns	
tCP	Cenable to Precharge Delay	85			ns	
tovh	Precharge & Cenable Overlap, High			140	ns	

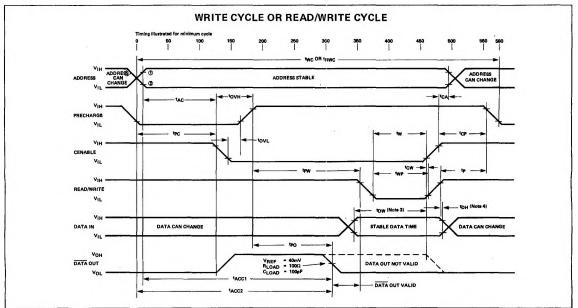
READ CYCLE

SYMBOL	TEST	₩IN.	TYP.	MAX.	UNIT	CONDITIONS	
t _{RC} (1)	Read Cycle	480			ns		
^t POV	Precharge to End of Cenable	165		500	ns		
^t PO	End of Precharge to Output Delay			120	ns	t ₇ = 20 ns	
^t ACC1(1)	Address to Output Access	300			ns	tACmin + tOVLmin + tPOmax + 2 t7 VREF = 40 mV	
¹ ACC2 ⁽¹⁾	Precharge to Output Access	310			ns	^t PCmin ^{+ t} OVLmin + tPOmax ^{+ 2} t _T	

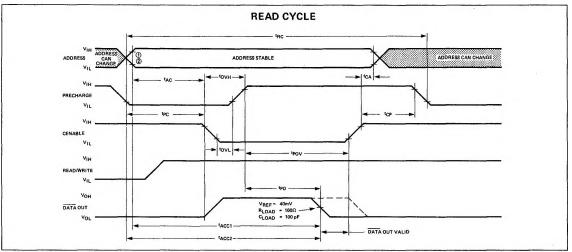
AC CHARACTERISTICS (Cont'd)

WRITE OR READ/WRITE CYCLE

SYMBOL	TEST	MIN.	TYP.	MAX.	UNIT	CONDITIONS
twc(1)	Write Cycle	580			ns	$-t_{\tau} = 20 \text{ ns}$
tRWC(1)	Read/Write Cycle	580			ns	1 20113
tPW	Precharge to Read/Write Delay	165		500	ns	
tWP	Read/Write Pulse Width	50			ns	
tw	Read/Write Set Up Time	80			ns	
tDW	Data Set Up Time	105			ns	
^t DH	Data Hold Time	10			ns	
^t PO	End of Precharge to Output Delay			120	ns	C _{LOAD} = 100 pF R _{LOAD} = 100Ω
tp	Time to Next Precharge	0			ns	V _{REF} = 40 mV
ťCW	Read/Write Hold Time			10	ns	

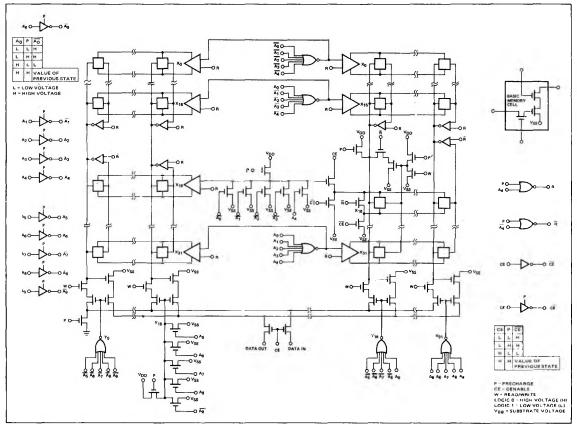

CAPACITANCE (note 2)

SYMBOL	TEST	MIN.	TYP. MAX.	UNIT	CONDITIONS		
C _{AD}	Address Capacitance		5	7	pF	V _{IN} = V _{SS}	1
CPR	Precharge Capacitance		15	18	pF	VIN = VSS	
CCE	Cenable Capacitance		15	18	pF	VIN = VSS	f = 1 MHz
CRW	Read/Write Capacitance		11	15	pF	VIN = VSS	– All Unused Pins are
CIN1	Data Input Capacitance		4	5	pF	Cenable = 0V	at A.C. Ground
						VIN = VSS	
CIN2	Data Input Capacitance		2	4	pF	Cenable = V _{SS}	
						VIN = VSS	
COUT	Data Output Capacitance		2	3	pF	V _{OUT} = 0V	


(1) These times will degrade by 40 ns (worst case) if the maximum values for V_{1L} (for precharge, cenable and read/write inputs) go to $V_{SS} - 14.2V \otimes 0^{\circ}C$ and $V_{SS} - 14.5V \otimes 70^{\circ}C$ as defined on page 2.

(2) This parameter is periodically sampled and is not 100% tested. It is measured at worst case operating conditions. Capacitance measurements for plastic packages only.

TIMING DIAGRAM


TIMING DIAGRAM (Cont'd)

NOTES: 1 VI 2 VS 3 tC

- $V_{DD} + 2V \\ V_{SS} 2V$ $t_{\ensuremath{\mathcal{T}}}$ is defined as the transitions between these two points.
- TDW is referenced to point ② of the rising edge of cenable or read/write whichever occurs first. tDH is referenced to point ③ of the rising edge of cenable or read/write whichever occurs first.
- 4

CIRCUIT SCHEMATIC

